Skip to content
Snippets Groups Projects
qrCodeTemplateUtils.ts 38.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • import QRCode from "easyqrcodejs";
    
    import { isNode } from "./common";
    
    
    const DEFAULT_TEMPLATE =
    
      "";
    
    const DEFAULT_LOGO =
    
      "";
    
    interface ChromakeyBoundaries {
      fromL: number;
      fromT: number;
      toL: number;
      toT: number;
    }
    
    const findChromakeyBoundaries = (
      width: number,
      height: number,
      imageData: ImageData,
      chromakeyWidth: number,
      chromakeyHeight: number
    ): ChromakeyBoundaries => {
    
      const maskSizeX = chromakeyWidth;
      const maskSizeY = chromakeyHeight;
    
      const totalSum = maskSizeX * maskSizeY * 255;
    
    
      const matrixR = [];
      const matrixG = [];
      const matrixB = [];
    
      for (let i = 0; i < width; i++) {
        matrixR[i] = [];
        matrixG[i] = [];
        matrixB[i] = [];
        for (let j = 0; j < height; j++) {
          matrixR[i][j] = 0;
          matrixG[i][j] = 0;
          matrixB[i][j] = 0;
        }
      }
    
    
      const maxDistance = Math.sqrt(3 * totalSum * totalSum);
      const suitableSimilarity = 0.6;
    
      let bestSimilarity = 0;
      let bestX = -1;
      let bestY = -1;
    
      for (let x = 0; x < width; x++) {
        for (let y = 0; y < height; y++) {
          const index = (y * width + x) * 4;
          const r = imageData.data[index];
          const g = imageData.data[index + 1];
          const b = imageData.data[index + 2];
    
          matrixR[x][y] += r;
          matrixG[x][y] += g;
          matrixB[x][y] += b;
    
          if (x - 1 >= 0) {
            matrixR[x][y] += matrixR[x - 1][y];
            matrixG[x][y] += matrixG[x - 1][y];
            matrixB[x][y] += matrixB[x - 1][y];
          }
    
          if (y - 1 >= 0) {
            matrixR[x][y] += matrixR[x][y - 1];
            matrixG[x][y] += matrixG[x][y - 1];
            matrixB[x][y] += matrixB[x][y - 1];
          }
    
          if (x - 1 >= 0 && y - 1 >= 0) {
            matrixR[x][y] -= matrixR[x - 1][y - 1];
            matrixG[x][y] -= matrixG[x - 1][y - 1];
            matrixB[x][y] -= matrixB[x - 1][y - 1];
          }
    
          if (x >= maskSizeX && y >= maskSizeY) {
    
            const tempSumR =
              matrixR[x][y] +
    
              matrixR[x - maskSizeX][y - maskSizeY] -
              (matrixR[x - maskSizeX][y] + matrixR[x][y - maskSizeY]);
    
            const tempSumG =
              matrixG[x][y] +
    
              matrixG[x - maskSizeX][y - maskSizeY] -
              (matrixG[x - maskSizeX][y] + matrixG[x][y - maskSizeY]);
    
            const tempSumB =
              matrixB[x][y] +
    
              matrixB[x - maskSizeX][y - maskSizeY] -
              (matrixB[x - maskSizeX][y] + matrixB[x][y - maskSizeY]);
    
            const distance = Math.sqrt(
              Math.pow(0 - tempSumR, 2) +
                Math.pow(totalSum - tempSumG, 2) +
                Math.pow(0 - tempSumB, 2)
            );
            const similarity = 1 - distance / maxDistance;
    
            if (similarity > bestSimilarity) {
              bestX = x;
              bestY = y;
              bestSimilarity = similarity;
    
      if (bestX >= 0 && bestY >= 0 && bestSimilarity > suitableSimilarity) {
        return {
          fromL: bestX - maskSizeX,
          fromT: bestY - maskSizeY,
          toL: bestX - maskSizeX + chromakeyWidth,
          toT: bestY - maskSizeY + chromakeyHeight,
        };
      }
    
    
      return { fromL: -1, fromT: -1, toL: -1, toT: -1 };
    };
    
    
    interface TemplateOptions {
      src: string;
      placeholderSize: number;
    }
    
    
    /**
     * https://www.qrcode.com/en/about/error_correction.html#:~:text=QR%20Code%20has%20error%20correction,of%20data%20QR%20Code%20size.
     */
    type CorrectionLevels = "L" | "M" | "Q" | "H";
    
    
    interface QrCodeOptions {
      width?: number;
      height?: number;
      logoSrc?: string;
      logoWidth?: number;
      logoHeight?: number;
    
      correctionLevel?: CorrectionLevels;
    
    const defaultOptions: QrCodeOptions = {
      width: 256,
      height: 256,
      logoSrc: DEFAULT_LOGO,
      logoWidth: 75,
    
      logoHeight: 75,
    
      // Use "L" level as we don't need a redundancy
      correctionLevel: "L",
    };
    
    const defaultTemplateOptions: TemplateOptions = {
      placeholderSize: 260,
      src: DEFAULT_TEMPLATE,
    };
    
    /**
     * Generates QR Code based of the context - Browser or NodeJs.
     * IMPORTANT: In case of NodeJS it uses the JSDON and Canvas libraries to mimic the DOM behaviour
     *
     * @param text
     * @param qrCodeOptions
     * @param templateOptions
     * @returns
     */
    const generateQrCode = (
    
      text: string,
      qrCodeOptions?: QrCodeOptions,
      templateOptions?: TemplateOptions
    ): Promise<string> => {
      qrCodeOptions = qrCodeOptions
        ? Object.assign(defaultOptions, qrCodeOptions)
        : defaultOptions;
    
      templateOptions = templateOptions
        ? Object.assign(defaultTemplateOptions, templateOptions)
        : defaultTemplateOptions;
    
      const options = {
        text,
        width: qrCodeOptions.width,
        height: qrCodeOptions.height,
        colorDark: "#000000",
        colorLight: "#ffffff",
        dotScale: 1,
      };
    
      if (qrCodeOptions.logoSrc) {
        Object.assign(options, {
          logo: qrCodeOptions.logoSrc,
          logoBackgroundTransparent: true,
          logoWidth: qrCodeOptions.logoWidth,
          logoHeight: qrCodeOptions.logoHeight,
        });
      }
    
    
      if (isNode) {
        return generateNodeJSQrCode(options, qrCodeOptions, templateOptions);
      }
      options["correctLevel"] = QRCode.CorrectLevel[qrCodeOptions.correctionLevel]; // L, M, Q, H
      return generateBrowserQrCode(options, templateOptions);
    };
    
    /**
     * Nodejs impl for generation of qr code. Uses JSDOM and Canvas libs to mimic the DOM.
     *
     * @param defaultOptions
     * @param qrCodeOptions
     * @param templateOptions
     * @returns
     */
    const generateNodeJSQrCode = async (
      defaultOptions: QrCodeOptions,
      qrCodeOptions: QrCodeOptions,
      templateOptions: TemplateOptions
    ): Promise<string> => {
    
    Zdravko Iliev's avatar
    Zdravko Iliev committed
      const QRCodeNodeJS = await import("easyqrcodejs-nodejs/index.js");
    
    
      defaultOptions["correctLevel"] =
        QRCodeNodeJS.CorrectLevel[qrCodeOptions.correctionLevel]; // L, M, Q, H
    
      const qrcode = new QRCodeNodeJS.default(defaultOptions);
      const dataUrl = await qrcode.toDataURL();
    
      await new Promise((resolve) => setTimeout(resolve, 10));
    
      return await putQrCodeOnChromakeyTemplateNodeJS(
        dataUrl,
        templateOptions.src,
        templateOptions.placeholderSize,
        templateOptions.placeholderSize
      );
    };
    
    const generateBrowserQrCode = async (
      qrCodeOptions: QrCodeOptions,
      templateOptions: TemplateOptions
    ): Promise<string> => {
      const container = document.createElement("div");
      new QRCode(container, qrCodeOptions);
    
      const canvas = container.getElementsByTagName("canvas")[0];
    
      // Add short async action because of the bug with logo not appearing in the resulting image.
      await new Promise((resolve) => setTimeout(resolve, 10));
    
      return await putQrCodeOnChromakeyTemplate(
        canvas.toDataURL(),
        templateOptions.src,
        templateOptions.placeholderSize,
        templateOptions.placeholderSize
      );
    };
    
    
    /**
     * Nodejs impl for template generation
     *
     * @param qrCodeImageBase64
     * @param templateImageBase64
     * @param placeholderWidth
     * @param placeholderHeight
     * @param scale
     * @returns
     */
    const putQrCodeOnChromakeyTemplateNodeJS = async (
      qrCodeImageBase64: string,
      templateImageBase64: string,
      placeholderWidth: number,
      placeholderHeight: number,
      scale = 1
    ): Promise<string> => {
      const jsdom = await import("jsdom");
    
      const { JSDOM } = jsdom;
      const dom = new JSDOM("", { resources: "usable" });
      const document = dom.window.document;
      let qrCodeImage;
    
      try {
        qrCodeImage = await loadImageNode(qrCodeImageBase64, document);
      } catch (e) {
        throw new Error("NodeJS cannot load qr code image");
      }
      const templateImage = await loadImageNode(templateImageBase64, document);
    
      if (
        templateImage.width < placeholderWidth ||
        templateImage.height < placeholderHeight
      ) {
        throw new Error("Placeholder is bigger than image");
      }
    
      const templateCanvas = document.createElement("canvas");
      templateCanvas.width = templateImage.width;
      templateCanvas.height = templateImage.height;
    
      const templateCtx = templateCanvas.getContext("2d");
      templateCtx.drawImage(
        templateImage,
        0,
        0,
        templateImage.width,
        templateImage.height
      );
    
      const templateImgData = templateCtx.getImageData(
        0,
        0,
        templateCanvas.width,
        templateCanvas.height
      );
    
      const placeholderCoordinates = findChromakeyBoundaries(
        templateImage.width,
        templateImage.height,
        templateImgData,
        placeholderWidth,
        placeholderHeight
      );
      // -2 is for QR to slightly cover borders. To avoid green mask bulging out
      const scaleX = ((qrCodeImage.width - 2) / placeholderWidth) * scale;
      const scaleY = ((qrCodeImage.height - 2) / placeholderHeight) * scale;
      qrCodeImage.width *= scale;
      qrCodeImage.height *= scale;
    
      const bannerCanvas = document.createElement("canvas");
      const scaledTemplateW = Math.floor(templateImage.width * scaleX);
      const scaledTemplateH = Math.floor(templateImage.height * scaleY);
    
      bannerCanvas.width = scaledTemplateW;
      bannerCanvas.height = scaledTemplateH;
    
      const bannerCtx = bannerCanvas.getContext("2d");
      // bannerCtx
    
      bannerCtx.drawImage(
        templateImage,
        0,
        0,
        templateImage.width,
        templateImage.height,
        0,
        0,
        scaledTemplateW,
        scaledTemplateH
      );
      // +1 hides green border
      bannerCtx.drawImage(
        qrCodeImage,
        placeholderCoordinates.fromL * scaleX,
        placeholderCoordinates.fromT * scaleY,
        qrCodeImage.width,
        qrCodeImage.height
      );
      return bannerCanvas.toDataURL();
    };
    
    
    Igor Markin's avatar
    Igor Markin committed
    const putQrCodeOnChromakeyTemplate = async (
      qrCodeImageBase64: string,
      templateImageBase64: string,
    
      placeholderWidth: number,
    
    Igor Markin's avatar
    Igor Markin committed
      placeholderHeight: number,
      scale = 1
    
    Igor Markin's avatar
    Igor Markin committed
    ): Promise<string> => {
      const qrCodeImage = await loadImage(qrCodeImageBase64);
      const templateImage = await loadImage(templateImageBase64);
    
    
      if (
        templateImage.width < placeholderWidth ||
        templateImage.height < placeholderHeight
      ) {
        throw new Error("Placeholder is bigger than image");
      }
    
    
    Igor Markin's avatar
    Igor Markin committed
      const templateCanvas = document.createElement("canvas");
      templateCanvas.width = templateImage.width;
      templateCanvas.height = templateImage.height;
    
    Igor Markin's avatar
    Igor Markin committed
      const templateCtx = templateCanvas.getContext("2d");
      templateCtx.drawImage(
    
        templateImage,
        0,
        0,
        templateImage.width,
    
    Igor Markin's avatar
    Igor Markin committed
        templateImage.height
      );
    
      const templateImgData = templateCtx.getImageData(
    
    Igor Markin's avatar
    Igor Markin committed
        templateCanvas.width,
        templateCanvas.height
    
      );
    
      const placeholderCoordinates = findChromakeyBoundaries(
        templateImage.width,
        templateImage.height,
    
    Igor Markin's avatar
    Igor Markin committed
        templateImgData,
        placeholderWidth,
        placeholderHeight
    
    Igor Markin's avatar
    Igor Markin committed
      // -2 is for QR to slightly cover borders. To avoid green mask bulging out
      const scaleX = ((qrCodeImage.width - 2) / placeholderWidth) * scale;
      const scaleY = ((qrCodeImage.height - 2) / placeholderHeight) * scale;
      qrCodeImage.width *= scale;
      qrCodeImage.height *= scale;
    
      const bannerCanvas = document.createElement("canvas");
      const scaledTemplateW = Math.floor(templateImage.width * scaleX);
      const scaledTemplateH = Math.floor(templateImage.height * scaleY);
    
      bannerCanvas.width = scaledTemplateW;
      bannerCanvas.height = scaledTemplateH;
    
      const bannerCtx = bannerCanvas.getContext("2d");
      // bannerCtx
    
      bannerCtx.drawImage(
        templateImage,
        0,
        0,
        templateImage.width,
        templateImage.height,
        0,
        0,
        scaledTemplateW,
        scaledTemplateH
      );
    
      // +1 hides green border
      bannerCtx.drawImage(
    
        qrCodeImage,
    
    Igor Markin's avatar
    Igor Markin committed
        placeholderCoordinates.fromL * scaleX,
        placeholderCoordinates.fromT * scaleY,
    
        qrCodeImage.width,
        qrCodeImage.height
      );
    
    Igor Markin's avatar
    Igor Markin committed
      return bannerCanvas.toDataURL();
    
    Igor Markin's avatar
    Igor Markin committed
    const loadImage = (imageSrc: string): Promise<HTMLImageElement> => {
      return new Promise((resolve, reject) => {
        const templateImg = document.createElement("img");
        templateImg.src = imageSrc;
        templateImg.onload = () => resolve(templateImg);
    
        templateImg.onerror = (error) => reject(error);
      });
    };
    
    /**
     * Duplicates the load img for browser
     *
     * @param imageSrc
     * @returns
     */
    const loadImageNode = (
      imageSrc: string,
      document
    ): Promise<HTMLImageElement> => {
      return new Promise((resolve, reject) => {
        const templateImg = document.createElement("img");
        templateImg.src = imageSrc;
        templateImg.onload = () => resolve(templateImg);
        templateImg.onerror = (error) => reject(error);
    
    export default {
      putQrCodeOnChromakeyTemplate,
    
      generateQrCode,