Skip to content
Snippets Groups Projects
encode.go 9.93 KiB
Newer Older
  • Learn to ignore specific revisions
  • // Copyright 2019 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    package proto
    
    import (
    	"google.golang.org/protobuf/encoding/protowire"
    	"google.golang.org/protobuf/internal/encoding/messageset"
    	"google.golang.org/protobuf/internal/order"
    	"google.golang.org/protobuf/internal/pragma"
    	"google.golang.org/protobuf/reflect/protoreflect"
    	"google.golang.org/protobuf/runtime/protoiface"
    )
    
    // MarshalOptions configures the marshaler.
    //
    // Example usage:
    
    //
    //	b, err := MarshalOptions{Deterministic: true}.Marshal(m)
    
    type MarshalOptions struct {
    	pragma.NoUnkeyedLiterals
    
    	// AllowPartial allows messages that have missing required fields to marshal
    	// without returning an error. If AllowPartial is false (the default),
    	// Marshal will return an error if there are any missing required fields.
    	AllowPartial bool
    
    	// Deterministic controls whether the same message will always be
    	// serialized to the same bytes within the same binary.
    	//
    	// Setting this option guarantees that repeated serialization of
    	// the same message will return the same bytes, and that different
    	// processes of the same binary (which may be executing on different
    	// machines) will serialize equal messages to the same bytes.
    	// It has no effect on the resulting size of the encoded message compared
    	// to a non-deterministic marshal.
    	//
    	// Note that the deterministic serialization is NOT canonical across
    	// languages. It is not guaranteed to remain stable over time. It is
    	// unstable across different builds with schema changes due to unknown
    	// fields. Users who need canonical serialization (e.g., persistent
    	// storage in a canonical form, fingerprinting, etc.) must define
    	// their own canonicalization specification and implement their own
    	// serializer rather than relying on this API.
    	//
    	// If deterministic serialization is requested, map entries will be
    	// sorted by keys in lexographical order. This is an implementation
    	// detail and subject to change.
    	Deterministic bool
    
    	// UseCachedSize indicates that the result of a previous Size call
    	// may be reused.
    	//
    	// Setting this option asserts that:
    	//
    	// 1. Size has previously been called on this message with identical
    	// options (except for UseCachedSize itself).
    	//
    	// 2. The message and all its submessages have not changed in any
    	// way since the Size call.
    	//
    	// If either of these invariants is violated,
    	// the results are undefined and may include panics or corrupted output.
    	//
    	// Implementations MAY take this option into account to provide
    	// better performance, but there is no guarantee that they will do so.
    	// There is absolutely no guarantee that Size followed by Marshal with
    	// UseCachedSize set will perform equivalently to Marshal alone.
    	UseCachedSize bool
    }
    
    // Marshal returns the wire-format encoding of m.
    func Marshal(m Message) ([]byte, error) {
    	// Treat nil message interface as an empty message; nothing to output.
    	if m == nil {
    		return nil, nil
    	}
    
    	out, err := MarshalOptions{}.marshal(nil, m.ProtoReflect())
    	if len(out.Buf) == 0 && err == nil {
    		out.Buf = emptyBytesForMessage(m)
    	}
    	return out.Buf, err
    }
    
    // Marshal returns the wire-format encoding of m.
    func (o MarshalOptions) Marshal(m Message) ([]byte, error) {
    	// Treat nil message interface as an empty message; nothing to output.
    	if m == nil {
    		return nil, nil
    	}
    
    	out, err := o.marshal(nil, m.ProtoReflect())
    	if len(out.Buf) == 0 && err == nil {
    		out.Buf = emptyBytesForMessage(m)
    	}
    	return out.Buf, err
    }
    
    // emptyBytesForMessage returns a nil buffer if and only if m is invalid,
    // otherwise it returns a non-nil empty buffer.
    //
    // This is to assist the edge-case where user-code does the following:
    
    //	m1.OptionalBytes, _ = proto.Marshal(m2)
    
    // where they expect the proto2 "optional_bytes" field to be populated
    // if any only if m2 is a valid message.
    func emptyBytesForMessage(m Message) []byte {
    	if m == nil || !m.ProtoReflect().IsValid() {
    		return nil
    	}
    	return emptyBuf[:]
    }
    
    // MarshalAppend appends the wire-format encoding of m to b,
    // returning the result.
    func (o MarshalOptions) MarshalAppend(b []byte, m Message) ([]byte, error) {
    	// Treat nil message interface as an empty message; nothing to append.
    	if m == nil {
    		return b, nil
    	}
    
    	out, err := o.marshal(b, m.ProtoReflect())
    	return out.Buf, err
    }
    
    // MarshalState returns the wire-format encoding of a message.
    //
    // This method permits fine-grained control over the marshaler.
    // Most users should use Marshal instead.
    func (o MarshalOptions) MarshalState(in protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
    	return o.marshal(in.Buf, in.Message)
    }
    
    // marshal is a centralized function that all marshal operations go through.
    // For profiling purposes, avoid changing the name of this function or
    // introducing other code paths for marshal that do not go through this.
    func (o MarshalOptions) marshal(b []byte, m protoreflect.Message) (out protoiface.MarshalOutput, err error) {
    	allowPartial := o.AllowPartial
    	o.AllowPartial = true
    	if methods := protoMethods(m); methods != nil && methods.Marshal != nil &&
    		!(o.Deterministic && methods.Flags&protoiface.SupportMarshalDeterministic == 0) {
    		in := protoiface.MarshalInput{
    			Message: m,
    			Buf:     b,
    		}
    		if o.Deterministic {
    			in.Flags |= protoiface.MarshalDeterministic
    		}
    		if o.UseCachedSize {
    			in.Flags |= protoiface.MarshalUseCachedSize
    		}
    		if methods.Size != nil {
    			sout := methods.Size(protoiface.SizeInput{
    				Message: m,
    				Flags:   in.Flags,
    			})
    			if cap(b) < len(b)+sout.Size {
    				in.Buf = make([]byte, len(b), growcap(cap(b), len(b)+sout.Size))
    				copy(in.Buf, b)
    			}
    			in.Flags |= protoiface.MarshalUseCachedSize
    		}
    		out, err = methods.Marshal(in)
    	} else {
    		out.Buf, err = o.marshalMessageSlow(b, m)
    	}
    	if err != nil {
    		return out, err
    	}
    	if allowPartial {
    		return out, nil
    	}
    	return out, checkInitialized(m)
    }
    
    func (o MarshalOptions) marshalMessage(b []byte, m protoreflect.Message) ([]byte, error) {
    	out, err := o.marshal(b, m)
    	return out.Buf, err
    }
    
    // growcap scales up the capacity of a slice.
    //
    // Given a slice with a current capacity of oldcap and a desired
    // capacity of wantcap, growcap returns a new capacity >= wantcap.
    //
    // The algorithm is mostly identical to the one used by append as of Go 1.14.
    func growcap(oldcap, wantcap int) (newcap int) {
    	if wantcap > oldcap*2 {
    		newcap = wantcap
    	} else if oldcap < 1024 {
    		// The Go 1.14 runtime takes this case when len(s) < 1024,
    		// not when cap(s) < 1024. The difference doesn't seem
    		// significant here.
    		newcap = oldcap * 2
    	} else {
    		newcap = oldcap
    		for 0 < newcap && newcap < wantcap {
    			newcap += newcap / 4
    		}
    		if newcap <= 0 {
    			newcap = wantcap
    		}
    	}
    	return newcap
    }
    
    func (o MarshalOptions) marshalMessageSlow(b []byte, m protoreflect.Message) ([]byte, error) {
    	if messageset.IsMessageSet(m.Descriptor()) {
    		return o.marshalMessageSet(b, m)
    	}
    	fieldOrder := order.AnyFieldOrder
    	if o.Deterministic {
    		// TODO: This should use a more natural ordering like NumberFieldOrder,
    		// but doing so breaks golden tests that make invalid assumption about
    		// output stability of this implementation.
    		fieldOrder = order.LegacyFieldOrder
    	}
    	var err error
    	order.RangeFields(m, fieldOrder, func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
    		b, err = o.marshalField(b, fd, v)
    		return err == nil
    	})
    	if err != nil {
    		return b, err
    	}
    	b = append(b, m.GetUnknown()...)
    	return b, nil
    }
    
    func (o MarshalOptions) marshalField(b []byte, fd protoreflect.FieldDescriptor, value protoreflect.Value) ([]byte, error) {
    	switch {
    	case fd.IsList():
    		return o.marshalList(b, fd, value.List())
    	case fd.IsMap():
    		return o.marshalMap(b, fd, value.Map())
    	default:
    		b = protowire.AppendTag(b, fd.Number(), wireTypes[fd.Kind()])
    		return o.marshalSingular(b, fd, value)
    	}
    }
    
    func (o MarshalOptions) marshalList(b []byte, fd protoreflect.FieldDescriptor, list protoreflect.List) ([]byte, error) {
    	if fd.IsPacked() && list.Len() > 0 {
    		b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
    		b, pos := appendSpeculativeLength(b)
    		for i, llen := 0, list.Len(); i < llen; i++ {
    			var err error
    			b, err = o.marshalSingular(b, fd, list.Get(i))
    			if err != nil {
    				return b, err
    			}
    		}
    		b = finishSpeculativeLength(b, pos)
    		return b, nil
    	}
    
    	kind := fd.Kind()
    	for i, llen := 0, list.Len(); i < llen; i++ {
    		var err error
    		b = protowire.AppendTag(b, fd.Number(), wireTypes[kind])
    		b, err = o.marshalSingular(b, fd, list.Get(i))
    		if err != nil {
    			return b, err
    		}
    	}
    	return b, nil
    }
    
    func (o MarshalOptions) marshalMap(b []byte, fd protoreflect.FieldDescriptor, mapv protoreflect.Map) ([]byte, error) {
    	keyf := fd.MapKey()
    	valf := fd.MapValue()
    	keyOrder := order.AnyKeyOrder
    	if o.Deterministic {
    		keyOrder = order.GenericKeyOrder
    	}
    	var err error
    	order.RangeEntries(mapv, keyOrder, func(key protoreflect.MapKey, value protoreflect.Value) bool {
    		b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
    		var pos int
    		b, pos = appendSpeculativeLength(b)
    
    		b, err = o.marshalField(b, keyf, key.Value())
    		if err != nil {
    			return false
    		}
    		b, err = o.marshalField(b, valf, value)
    		if err != nil {
    			return false
    		}
    		b = finishSpeculativeLength(b, pos)
    		return true
    	})
    	return b, err
    }
    
    // When encoding length-prefixed fields, we speculatively set aside some number of bytes
    // for the length, encode the data, and then encode the length (shifting the data if necessary
    // to make room).
    const speculativeLength = 1
    
    func appendSpeculativeLength(b []byte) ([]byte, int) {
    	pos := len(b)
    	b = append(b, "\x00\x00\x00\x00"[:speculativeLength]...)
    	return b, pos
    }
    
    func finishSpeculativeLength(b []byte, pos int) []byte {
    	mlen := len(b) - pos - speculativeLength
    	msiz := protowire.SizeVarint(uint64(mlen))
    	if msiz != speculativeLength {
    		for i := 0; i < msiz-speculativeLength; i++ {
    			b = append(b, 0)
    		}
    		copy(b[pos+msiz:], b[pos+speculativeLength:])
    		b = b[:pos+msiz+mlen]
    	}
    	protowire.AppendVarint(b[:pos], uint64(mlen))
    	return b
    }