Skip to content
Snippets Groups Projects

dgraph

Distributed Graph Serving System

Installation

Via Docker

There's a docker image that you can readily use.

$ docker pull dgraph/dgraph:latest
$ docker run -t -i -v /somedir:/dgraph -v $HOME/go/src/github.com/dgraph-io/benchmarks/data:/data -p 8080:8080 dgraph/dgraph:latest

Once into the dgraph container, you can now load your data. Also see Data Loading below.

$ loader --postings /dgraph/p --rdfgzips /data/rdf-data.gzip --max_ram_mb 3000

Once done, you can start the server

$ mkdir /dgraph/m  # Create the mutations directory first.
$ server --postings /dgraph/p --mutations /dgraph/m  --max_ram_mb 3000

Now you can query the server, like so:

$ curl localhost:8080/query -XPOST -d '{root(_xid_: g.11b7nwjrxk) {type.object.name.en}}'

Directly on host machine

Best way to do this is to refer to Dockerfile, which has the most complete instructions on getting the right setup. All the instructions below are based on a Debian/Ubuntu system.

Install Go 1.4

Go 1.5 has a regression bug in cgo, due to which DGraph is dependent on Go1.4. So download and install Go 1.4.3.

Install RocksDB

DGraph depends on RocksDB for storing posting lists.

# First install dependencies.
# For Ubuntu, follow the ones below. For others, refer to INSTALL file in rocksdb.
$ sudo apt-get install libgflags-dev libsnappy-dev zlib1g-dev libbz2-dev
$ git clone https://github.com/facebook/rocksdb.git
$ cd rocksdb
$ git checkout v4.1
$ make shared_lib
$ sudo make install

This would install RocksDB library in /usr/local/lib. Make sure that your LD_LIBRARY_PATH is correctly pointing to it.

# In ~/.bashrc
export LD_LIBRARY_PATH="/usr/local/lib"

Install DGraph

Now get DGraph code. DGraph uses glock to fix dependency versions.

go get -v github.com/robfig/glock
go get -v github.com/dgraph-io/dgraph/...
glock sync github.com/dgraph-io/dgraph

# Optional
go test github.com/dgraph-io/dgraph/...

Usage

Data Loading

Let's load up data first. If you have RDF data, you can use that. Or, there's Freebase film rdf data here.

To use the above mentioned Film RDF data, install Git LFS first. I've found the Linux download to be the easiest way to install. Once installed, clone the repository:

$ git clone https://github.com/dgraph-io/benchmarks.git

To load the data in bulk, use the data loader binary in dgraph/server/loader. Loader needs a postings directory, where posting lists are stored.

$ cd $GOPATH/src/github.com/dgraph-io/dgraph/server/loader
$ go build . && ./loader --rdfgzips=path_of_benchmarks_dir/data/rdf-films.gz,path_of_benchmarks_dir/data/names.gz --postings DIRPATH/p

Loading performance

Loader is memory bound. Every mutation loads a posting list in memory, where mutations are applied in layers above posting lists. While loader doesn't write to disk every time a mutation happens, it does periodically merge all the mutations to posting lists, and writes them to rocksdb which persists them. How often this merging happens can be fine tuned by specifying max_ram_mb. Periodically loader checks it's memory usage and if determines it exceeds this threshold, it would stop the world, and start the merge process. The more memory is available for loader to work with, the less frequently merging needs to be done, the faster the loading.

In other words, loader performance is highly dependent on merging performance, which depends on how fast the underlying persistent storage is. So, Ramfs/Tmpfs > SSD > Hard disk, when it comes to loading performance.

As a reference point, it takes 220 seconds to load 4.1M RDFs from names.gz(from benchmarks repository) on my 6-core Intel Xeon Dell Precision T3500, using 1G TMPFS for postings directory, and with max_ram_mb=3000 flag set.

Querying

Once data is loaded, point the dgraph server to the postings and mutations directory.

$ cd $GOPATH/src/github.com/dgraph-io/dgraph/server
$ go build .
$ ./server --mutations DIRPATH/m --postings DIRPATH/p

This would now run dgraph server at port 8080. If you want to run it at some other port, you can change that with the --port flag.

Now you can run GraphQL queries over freebase film data like so:

curl localhost:8080/query -XPOST -d '{
me(_xid_: m.06pj8) {
        type.object.name.en
        film.director.film {
                type.object.name.en
                film.film.starring {
                        film.performance.actor {
                                film.director.film {
                                        type.object.name.en
                                }
                                type.object.name.en
                        }
                }
                film.film.initial_release_date
                film.film.country
                film.film.genre {
                        type.object.name.en
                }
        }
}
}' > output.json

This query would find all movies directed by Steven Spielberg, their names, initial release dates, countries, genres, and the cast of these movies, i.e. characteres and actors playing those characters; and all the movies directed by these actors, if any.

The support for GraphQL is very limited right now. In particular, mutations, fragments etc. via GraphQL aren't supported. You can conveniently browse Freebase film schema here. There're also some schema pointers in README.